Step-by-step explanation
We need to apply the exponencial decay in order to get the final elevation of the mountain:
![f(t)=a(1-r)^t](https://img.qammunity.org/2023/formulas/mathematics/college/gtthwbzxs5whzywc32nhlcn3cadmvvpa8c.png)
Where a is the initial value, a=1,283 meters and r is the rate in decimal form r= 5/100 = 0.05 and t = time = 2 millenials
Then, we need to substitute the terms:
![f(t)=1,283\cdot(1-0.05)^2](https://img.qammunity.org/2023/formulas/mathematics/college/j3q6mb97z2gvbntqhkr700y6k5npzxw03o.png)
Subtracting numbers:
![f(t)=1,283\cdot0.95^2](https://img.qammunity.org/2023/formulas/mathematics/college/mcdtxjciwdv4dt96lbrlrnt6j02hka308z.png)
Computing the power:
![f(t)=1,283\cdot0.9025](https://img.qammunity.org/2023/formulas/mathematics/college/33246d20gmcmuo15yd79dvmb5bk0de6o2d.png)
Multiplying numbers:
![f(t)=1157.90\text{ meters}](https://img.qammunity.org/2023/formulas/mathematics/college/zojo3s0gyk4m4bdlip210xi6m0averk4fl.png)
Rounding to the nearest whole number:
Final Elevation = 1158 meters