The following function gives the height of an object thrown straight up after t seconds:
![h(t)=-16t^2+144t](https://img.qammunity.org/2023/formulas/mathematics/college/yafzta8jl4mvv2a1ersqp2e2lmp3zb5ens.png)
It's required to find h(2) and h(5).
a) To find h(2), substitute the value t = 2 into the equation as follows:
![h(2)=-16(2)^2+144(2)](https://img.qammunity.org/2023/formulas/mathematics/college/3pllw3os5gioza9kfzf3lv1uu2k3vsup9x.png)
Operating:
![\begin{gathered} h(2)=-16(4)+288 \\ \\ h(2)=-64+288 \\ \\ h(2)=224 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hv04bllg7fk61g1wr1ga9ismuvoicvisca.png)
b) Now find h(5):
![h(5)=-16(5)^2+144(5)](https://img.qammunity.org/2023/formulas/mathematics/college/isq3dgyufg54fw1bf6oswg7cstlekggyq5.png)
Calculating:
![\begin{gathered} h(5)=-16(25)+720 \\ \\ h(5)=-400+720 \\ \\ h(5)=320 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6ibkx28ajfmgwbm4zk2psiq8nh57g1ox2x.png)
The required heights are:
h(2) = 224
h(5) = 320