Given:
Total solution = 30 ml
The final solution ratio is 1 part syrup to 6 parts soda.
50% syrup solution.
1:200 soda solution.
Find-: How many soda solutions need to create the final sol.
Sol:
Let x = Number of liter of the 50% syrup solution.
y = Number of a liter of the 1 parts syrup to 200 parts soda solution.
So,
![x+y=30](https://img.qammunity.org/2023/formulas/mathematics/college/vyag70091bmixu8m8x6rnc3q4r72iakc30.png)
1:200 soda solution and 50% syrup.
![(1)/(2)x+(1)/(201)y=(1)/(7)*30](https://img.qammunity.org/2023/formulas/mathematics/college/g4kax37lie49hjha842if68fokkwaaptte.png)
Solve for "x" and "y" the put
![y=30-x](https://img.qammunity.org/2023/formulas/mathematics/college/e4es8dw9t8j7mf879tw7450rruebiu4nem.png)
![\begin{gathered} (1)/(2)x+(1)/(201)(30-x)=(1)/(7)*30 \\ \\ x=8.356 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1ff18jbv4ah902n21gvjstb87w0kkgfqf1.png)
Then the value of "y" is:
![\begin{gathered} y=30-x \\ \\ y=21.644 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2rusx5kau1cxevej9p7jhivp3kf80js5vv.png)
Final sol. will be 30 ml total,
It will contain 8.356 ml of 50% syrup solution.
it will contain 21.644 ml of 1 part syrup to 200 parts soda solution
For the total amount of syrup in the final solution.
![\begin{gathered} (1)/(2)(8.356)+(1)/(201)(21.644) \\ \\ =4.286 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ps9jikjbeue8dhhjr3tuxc2yt1h92v7e5i.png)
4.286 ml of pure syrup