110k views
0 votes
use the riemann sum to estimate the (signed) area beneath the curve f(x)=x^2 over the interval (0,6)with 3 rectangles

1 Answer

4 votes

The function is:


f(x)=x^2

we start by calculating the delta of x


\Delta x=(6-0)/(3)=2

Then


\begin{gathered} x_i=x_0+i\text{ }\Delta x\text{ donde }i=1,2,3 \\ x_0=0 \\ x_1=0+1(2)=2 \\ x_2=0+2(2)=4 \\ x_3=0+3(2)=6 \end{gathered}
\begin{gathered} f(x_i) \\ f(2)=2^2=4 \\ f(4)=4^2=16 \\ f(6)=6^2=36 \end{gathered}

And the riemann sum is:


\begin{gathered} A=\sum_{n\mathop{=}1}^3f(x_1)\text{ }\Delta x \\ A=(4+16+36)*2=112 \end{gathered}

User Adhg
by
4.6k points