We are given that the legs of a triangle to be:
9mm, 6mm, and 12mm.
Solution
We can find the area of a triangle using Heron's formula:
![\begin{gathered} \text{Area = }\sqrt[]{s(s-a)(s-b)(s-c)} \\ \text{where, s = }(a+b+c)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ovn4z79cj57lwzk5ec3kbido6pc1te2efl.png)
s is called the semi-perimeter, a, b and c are the sides of the triangle.
The semi-perimeter(s) for the given triangle would be:

Hence, the area (A) :
![\begin{gathered} A\text{ = }\sqrt[]{13.5(13.5-9)(13.5-6)(13.5-12)} \\ =\text{ }\sqrt[]{13.5*4.5*7.5*1.5} \\ =\text{ 26.1426} \\ =26.1mm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ofr7y3nd3gm7y5l2tv4jsjadnnq9dp38c7.png)
Answer: Option C