To answer this question, we will use the following formulas for the slope and the distance with two given points (x₁,y₁) and (x₂,y₂):
![\begin{gathered} \text{slope}=(y_2-y_1)/(x_2-x_1), \\ \text{distance}=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ib4c2wsvj1y2mbiutx6lk9ftnjj8ig0071.png)
Applying the above formula for the slope we get:

Therefore, GH and IJ are parallel and both are perpendicular to HI and JG. Also, HI and JG are parallel.
Using the formula for the distance we get:
![\begin{gathered} \text{lengthGH}=\sqrt[]{(6-4)^2+(-7-(-1))^2}=\sqrt[]{4+36}=\sqrt[]{40}, \\ \text{lengthHI}=\sqrt[]{(4-7)^2+(-1-0)^2}=\sqrt[]{9+1}=\sqrt[]{10}, \\ \text{lengthIJ}=\sqrt[]{(7-9)^2+(0-(-6))^2}=\sqrt[]{4+36}=\sqrt[]{40}, \\ \text{lengthJG}=\sqrt[]{(9-6)^2+(-6-\mleft(-7\mright))^2}=\sqrt[]{9+1}=\sqrt[]{10}\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i3q5rlj642vcja742xrl3hyixffpbc4e26.png)
Therefore, the parallel sides have the same length.
Answer:

![\begin{gathered} \text{lengthGH}=\sqrt[]{40}, \\ \text{lengthHI}=\sqrt[]{10}, \\ \text{lengthIJ}=\sqrt[]{40}, \\ \text{lengthJG}=\sqrt[]{10}\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w8hap409tmkp4bffe4l7pg4pe771e6on9s.png)
The quadrilateral is a rectangle.