Answer:
a)
![P(t)=20600(1.05)^t](https://img.qammunity.org/2023/formulas/mathematics/college/iun3b8zcgu1lgnfn71a27o4x2v5dq1yr7b.png)
b) 30436
Step-by-step explanation:
An exponential growth function is usually given as;
![P(t)=a(1+r)^t](https://img.qammunity.org/2023/formulas/mathematics/college/3e0giqwymlzfy08kldtkyxfz9tv88k56i6.png)
where a = initial amount = 20600
r = rate of increase in decimal = 5% = 5/100 = 0.05
t = time in years
a) So a function that models the population t years after 2020 can be written as;
![\begin{gathered} P(t)=20600(1+0.05)^t \\ P(t)=20600(1.05)^t \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tjhhzxxv4m1e1omstpszvqai1w55d36hk0.png)
b) In the year 2028, t = 8, let's go ahead and solve for P(8);
![P(8)=20600(1.05)^8=20600(1.47745544379)=30436](https://img.qammunity.org/2023/formulas/mathematics/college/o9y3tx5203367sa65xhil6pvs0sgvtbxhj.png)
So in the year 2028, the population will be 30436