Considering the given Sequences let's find the explicit rule, and then the 7th element:
1) Examining it we can tell this is a Geometric Sequence
![\begin{gathered} (400,\text{ 200, 100)} \\ a_n=a_1q^(n-1)\Rightarrow a_n=400_{}((1)/(2))^(n-1) \\ a_7=400((1)/(2))^(7-1) \\ a_7=(25)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qo5qd21csfkzyzd17zys1m982l1c2naku4.png)
2) We can tell this is another Geometric Sequence whose common ratio is 5
![\begin{gathered} a_n=a_1q^(n-1) \\ a_n=1(5)^(n-1) \\ a_7=5^6 \\ a_7=15625 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5bmfsl17rkzef1q8skgjctna5s3j4dvkcs.png)
3) Geometric Sequence whose ratio is 4, and the first term is -1:
![\begin{gathered} a_n=a_1q^(n-1) \\ a_n=-1(4)^(n-1) \\ a_7=-1(4)^6 \\ a_7=-4096 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8vx4s158ekp7897iywdw91sivu6ukovrue.png)
Finally, the answers are:
![\begin{gathered} 1)a_n=400_{}((1)/(2))^(n-1) \\ a_7=(25)/(4) \\ 2)a_n=1(5)^(n-1) \\ a_7=15625 \\ 3)a_n=-1(4)^(n-1) \\ a_7=-4096 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u1m0ns3fenokt5d19vdr010lu5ybi443hk.png)