![(x-2)\cdot(x-(1+\sqrt[]{5}))\cdot(x+\sqrt[]{3})](https://img.qammunity.org/2023/formulas/mathematics/college/7ik9zbewu2vyit4o3fxfkqbwqc96ouals2.png)
If one choose the first factor (which is the conjugated binomial of x-2) and add it to our polinomial we would have:
![\begin{gathered} (x+2)\cdot(x-2)\cdot(x-(1+\sqrt[]{5}))\cdot(x+\sqrt[]{3}) \\ (x-2)^2\cdot(x-(1+\sqrt[]{5}))\cdot(x+\sqrt[]{3}) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/20qmjxjsfrltnly1908r892fhs2pp08wi4.png)
This means, for the first factor, 2 is a root of multiplicity 2.
The sentence specify that the polinomial has multiplicity of 1 for each root, therefore, we cannot use either the conjugated binomial or the square binomial of the roots.
Thus, the only factor which is not changing the multiplicity is:
![x+(1-\sqrt[]{3})](https://img.qammunity.org/2023/formulas/mathematics/college/ilo2rza8n6ndihradbf8dteqhs8quwju18.png)