Part a
we have the equation
![y=3x-4](https://img.qammunity.org/2023/formulas/mathematics/college/hvg83e0nkai5o1zagafkm4ayzme4tu6vkp.png)
so
The slope is m=3
The y-intercept is the point (0,-4)------> the value of b=-4
To graph the line, we need two points
we have one point (0,-4) y-intercept
Find out another point
For x=1
![\begin{gathered} y=3(1)-4 \\ y=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hidglhytcoyrcoe8t75wt8okocd1kr0vve.png)
The other point is (1,-1)
so
Plot the points (0,-4) and (1,-10
join them to graph the line
using a graphing tool
see the figure below
Part B
The equation of the line in slope-intercept form is given by
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
we have (8, 7) and (6, -1)
step 1
Find out the slope
![\begin{gathered} m=(-1-7)/(6-8) \\ \\ m=(-8)/(-2) \\ \\ m=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/taaiwk8fipsr7wv9fimhjmi9mv5z0lzbm8.png)
step 2
Substitute given values
we have
m=2
point (8,7)
![\begin{gathered} 7=8(2)+b \\ solve\text{ for b} \\ 7=16+b \\ b=-9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zh6tzqaul8q4k18g70n15eh4a97d07haev.png)
therefore
The equation of the line is
![y=2x-9](https://img.qammunity.org/2023/formulas/mathematics/college/re2847aq1yb9gcf06cy1k8f2bger96epx3.png)