The system solution set is
Step - by - Step Explanation
What to find?
The system solution set of the system of equations.
Given:
x-y+z=-2
3x+y -3z = 16
4x-6y + 7z=-19
To solve using the Gauss - Jordan elimination, we need to first set an argumented matrix.
That is;
![\begin{bmatrix}{1} & {-1} & {1\text2}\text{ } \\ {3} & {1} & {-3\text } \\ {4} & {-6} & {7\text}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/1wbfl1axw8l7n131g1q1xuf3v1m9teh4kf.png)
We can now proceed to solve using elementary row operations.
subtract row 1 multiply by 3 from row 2.
That is;
R₂ = R₂ - 3R₁
![\begin{bmatrix}{1} & {-1} & {1\text-2} \\ {0} & {4} & {-6\text 22} \\ {4} & {-6} & {7\text -19}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/ezgwij8qcx7tcxw7oe848lsi67i0ed1nir.png)
Subtract row 1 multiply by 4 from row 3.
That is;
R₃ = R₃ - 4R₁
![\begin{bmatrix}{1} & {-1} & -2 \\ {0} & {4} & -6 \\ {0} & {-2} & -11\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/bt2mukoajgay01swsjmbrl3wmfsxglfz26.png)
Divide row 2 by 4.
That is
R₂ =R₂/4
![\begin{bmatrix}{1} & {-1} & -2 \\ {0} & {1} & -(3)/(2) \\ {0} & {-2} & -11\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/pin82ugt19hekdpfk56e9aqdm05ktm9f15.png)
Add row 2 to row 1.
That is;
R₁ =R₁ + R₂
![\begin{bmatrix}{1} & {0} & -(1)/(2) \\ {0} & {1} & -(3)/(2 \\ {0} & {-2} & 3\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/z2aewdx1jpedp3ngv42kr55u9edcdb6xxc.png)
Add row 2 multiply by 2 to row 3.
That is;
R₃ = R₃ + 2R₂
![undefined]()