142k views
3 votes
I just need to know the correct one, i’m in a rush

I just need to know the correct one, i’m in a rush-example-1

1 Answer

6 votes

Consider the following implications,


\begin{gathered} f(-x)=f(x)\Rightarrow\text{ Even Function} \\ f(-x)=-f(x)\Rightarrow\text{ Odd Function} \end{gathered}

It is required to check that which of the given options satisfy the necessary condition for an even function.

Option A

Consider the function,


f(x)=\sin (-3\pi x)

Apply the check,


\begin{gathered} f(-x)=\sin (-3\pi(-x)) \\ f(-x)=\sin (3\pi x) \\ f(-x)=-\mleft\lbrace-\sin (3\pi x)\mright\rbrace \\ f(-x)=-\sin (-3\pi x) \\ f(-x)=-f(x) \end{gathered}

So given function is not an even function.

Option B

Consider the function,


f(x)=\tan (3\pi x)

Apply the check,


\begin{gathered} f(-x)=\tan (3\pi(-x)) \\ f(-x)=\tan \mleft\lbrace-(3\pi x)\mright\rbrace \\ f(-x)=-\tan (3\pi x) \\ f(-x)=-f(x) \end{gathered}

So the given function is akso not an even function.

Option C

Consider the function,


f(x)=\cos ((5)/(4)\pi x)

Apply the check,


\begin{gathered} f(-x)=\cos ((5)/(4)\pi(-x)) \\ f(-x)=\cos \mleft\lbrace-((5)/(4)\pi x)\mright\rbrace \\ f(-x)=\cos ((5)/(4)\pi x) \\ f(-x)=f(x) \end{gathered}

As the condition is satisfied, the given function is an even function.

Thus, option C is the correct choice.

User Jiyosub
by
7.1k points