208k views
0 votes
Find f^-1(x) select the correct choice and fill in answer box

Find f^-1(x) select the correct choice and fill in answer box-example-1
User Logjammin
by
4.5k points

1 Answer

6 votes

We can find the inverse of f(x) applying:


f(x)=y\longrightarrow f^(-1)(y)=x
\begin{gathered} f(x)=\sqrt[3]{x}+7=y \\ \sqrt[3]{x}+7=y \\ \sqrt[3]{x}=y-7 \\ x=(y-7)^3 \end{gathered}

The inverse function is:


f^(-1)(x)=(x-7)^3

The domain of the inverse function is equal to the range of the original function.

As the range of the original function in this case is "all y", the domain of the inverse function is "all x".

Find f^-1(x) select the correct choice and fill in answer box-example-1
User Abhishek Jangid
by
4.7k points