We need to substitute the value of
![x=(-1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/gc6m8mq2z6tk0y098vmimdpm25vc2sng04.png)
into the function of the options, and see which one is NOT equal to -1 (the symbol
≠
means "not equal to")
Option A. f(x) = 2x.
Substituting x = -1/2 we get:
![f((-1)/(2))=2((-1)/(2))=-1](https://img.qammunity.org/2023/formulas/mathematics/college/eryedjfub69dcqxjwijzwzvdgy2wsldc6b.png)
Opcion B. f(x) = ||x|| ---> where ||x|| means the nearest integer to x.
Substituting x = -1/2 we get:
![f((-1)/(2))=\left\Vert (-1)/(2)\left\Vert =-1\right?\right?](https://img.qammunity.org/2023/formulas/mathematics/college/w3xsmv556e7o79iv7g0a4rjtxriclvqof1.png)
This because the nearest integer to -1/2 is -1
Option C. f(x) = |-2x| where the bars mean absolute value, which is that we will always have something positive when there are absolute value bars.
Substituting x = -1/2 we get:
![f((-1)/(2))=|-2((-1)/(2))|=|1|=1](https://img.qammunity.org/2023/formulas/mathematics/college/zu5y7113hf6zvo7ufnh1xvrrbv2g83xftb.png)
Which is different from -1. So the answer is C. f(x) = |-2x|