337,423 views
13 votes
13 votes
Multiplying special cases of polynomials

1. (x + 5)(x − 5)

a) x2-2x−25
b) x2−25
c) x2+2x−25

2. (n − 1)(n + 1)

a) n2 − 2n -1
b) n2 − 1
c) n2 − 2n +1

3) (p − 1)2

a) p2 − 2p +1
b) p2 − 2p -1
c) p2 + 2p +1

4. (x − 4)2

a) x2 − 8x -16
b) x2 − 16
c) x2 − 8x +16

5. (n + 3)2

a) n2 + 6 n - 9
b) n2 - 6 n + 9
c) n2 + 6 n + 9

6.-(2 + v)2

a) 4 + 4v + v2
b) v2 + 4v +4
c) v2 + 4

Multiplying special cases of polynomials 1. (x + 5)(x − 5) a) x2-2x−25 b) x2−25 c-example-1
User Edoardotognoni
by
3.3k points

1 Answer

8 votes
8 votes

Answer:

1) b) x2−25

2) b) n2 − 1

3) a) p2 − 2p +1

4) c) x2 − 8x +16

5) c) n2 + 6 n + 9

6) b) v2 + 4v +4

Explanation:

1. (x + 5)(x − 5) = x^2 - 25

2. (n − 1)(n + 1) = n^2 - 1

3) (p − 1)^2 = p^2 - 2p + 1

4. (x − 4)^2 = x^2 -8x + 16

5. (n + 3)^2 = n^2 + 6n + 9

6. (2 + v)^2 = v^2 + 4v + 4

User Thomas Escolan
by
3.3k points