165k views
1 vote
A parabola goes through three points (0, 8), (2, -6) and (-1,18). Find the equation of the parabola.

A parabola goes through three points (0, 8), (2, -6) and (-1,18). Find the equation-example-1

1 Answer

2 votes

SOLUTION

The parabola psses through the three points


(0,8),(2,-6)\text{ and (-1,18)}

Using the form


y=ax^2+bx\text{ +c}

Substitute each of the point in for x and y into the form given above


\begin{gathered} \text{For the point (0,8), x=0 and y=8} \\ 8=a(0)^2+b(0)+c \\ \text{then} \\ 8=0+0+c \\ c=8\ldots\text{. equation 1} \end{gathered}

then


\begin{gathered} \text{For the point (2,-6) x=2,y=-6} \\ -6=a(2)^2+b(2)+c \\ -6=4a+2b+c\ldots\text{equation 2} \end{gathered}

Similarly, for the last point, we have


\begin{gathered} (-1,18),\text{then x=-1,y=18} \\ 18=a(-1)^2+b(-1)+c \\ 18=a-b+c\ldots\text{equation 3} \end{gathered}

Substitute the equation1 into equation 2 and equation 3


\begin{gathered} c=8\text{ into equation 2} \\ -6=4a+2b+8 \\ -6-8=4a+2b \\ -14=4a+2b \\ \text{Divide through by 2} \\ -7=2a+b \\ \text{Hence} \\ 2a+b=-7\ldots\text{ equation 4} \end{gathered}

Similarly for equation 3, we have


\begin{gathered} 18=a-b+c \\ \text{where c=8} \\ 18=a-b+8 \\ 18-8=a-b \\ 10=a-b \\ \text{Hence } \\ a-b=10\ldots\text{. equation 5} \end{gathered}

Hnece, solve equation 4 and 5 simultaneously for find the value of a and b


\begin{gathered} 2a+b=-7 \\ a-b=10 \\ \text{ By elimination method, add the two equation above } \\ 3a+0=3 \\ 3a=3 \\ \text{divide both sides by 3} \\ a=(3)/(3)=1 \end{gathered}

The substitute a=1 into equation 5 to obtain b


\begin{gathered} a-b=10 \\ 1-b=10 \\ -b=10-1 \\ -b=9 \\ \text{Hence } \\ b=-9 \end{gathered}

Hnece


a=1,b=-9,c=8

Substitute the values in the form below


\begin{gathered} y=ax^2+bx+c \\ y=1x^2+(-9)x+8 \\ y=x^2-9x+8 \end{gathered}

Then


f(x)=1x^2+(-9)x+8

Therefore, the equation of the parabola is f(x)=1x²-9x+8

Answer: f(x)=1x²-9x+8

User Alexandre Martin
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories