Solution
For this case we can create the following plot:
We can use the following formula to find the time to reach the ground:
![y=y_o+v_(oy)t-(1)/(2)gt^2](https://img.qammunity.org/2023/formulas/physics/college/1nk7vdjqjr3m5zzb2xi973fid04fxkv23m.png)
And we can assume that yo =0 and g= 9.8m/s^2 then we have this:
![0=22+55\cdot\sin 60\cdot t-(1)/(2)\cdot(9.8m)/(s^2)t^2](https://img.qammunity.org/2023/formulas/mathematics/college/n1h8ahyvd06a07xr3pv1cwy6drqsmnoknx.png)
And solving we have this quadratic expression:
![-4.9t^2+47.632t+22=0](https://img.qammunity.org/2023/formulas/mathematics/college/3mkgkre3yk07hebi9doeabtt7n1uir8luz.png)
And then solving for t using the quadratic formula we got:
![t=\frac{-47.632\pm\sqrt[]{(47.632)^2-4\cdot(-4.9)\cdot(22)}}{2\cdot(-4.9)}](https://img.qammunity.org/2023/formulas/mathematics/college/6r6cfzmt54fw8uu8ofqyz5f9sugfakkihf.png)
Solving we got:
t= 10.162 s
And then we can find the horixontal distance with this formula:
![R=v_x\cdot t=55\cdot\cos 60\cdot10.162s=279.455m](https://img.qammunity.org/2023/formulas/mathematics/college/3kmlk5gq871vlry1mg6noeg8lpxzozvw4o.png)