The simple interest per year is given by the following formula:
![A=p(1+rt)](https://img.qammunity.org/2023/formulas/mathematics/college/bgnaqfvrkp5r6f3dxyjnrx7oe3wdiac1vz.png)
Where:
P= initial amount
r= rate
t= time
![A=p+prt](https://img.qammunity.org/2023/formulas/mathematics/college/czcztshmb5pqdyjrorpil2bmu2ulkg0gss.png)
Where: prt is the annual interest.
Therefore:
![\begin{gathered} Interest4=prt=p_1*(0.04)(1) \\ Interest9=prt=p_2*(0.09)(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6swr3xgnqtmouc341d0vp42q4u0xkuwini.png)
We know that:
![Interest4+Interest9=p_1(0.04)+p_2(0.09)](https://img.qammunity.org/2023/formulas/mathematics/college/tg9cyxo6v4zoslamkq95fjwitoojkpqqiz.png)
Also:
![Interest4+Interest9=1,130](https://img.qammunity.org/2023/formulas/mathematics/college/mfhllikrtdmszxujc0cpk3ttzu3cwq5kz4.png)
Replacing:
![1,130=p_1(0.04)+p_2(0,095)\text{ \lparen1\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/k3equssvwgwmk8id7b58hyhy8lre3d2qui.png)
Secondly:
![p_1+p_2=20,000\text{ \lparen2\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/tsjuulbn6ohpcq74frs8ov5ueaukp2sueu.png)
Isolating P1 in (2):
![p_1=20,000-p_2\text{ \lparen3\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/81ls4n7phyi2lp0oc9pmjs7k9ex6vsh77z.png)
Substituing (3) in (1):
![\begin{gathered} 1,130=(20,000-p_2)*(0.04)+p_2(0.095) \\ 1,130=800-0.04p_2+0.095p_2 \\ 1,130-800=0.055p_2 \\ 0.055p_2=330 \\ p_2=(330)/(0.055)=6,000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7ku4sypypcle52k991kfr204qjitc7bxe2.png)
Finally, puttin P2=6,000 in equation (3):
![\begin{gathered} p_1=20,000-p_2 \\ p_1=20,000-6,000=14,000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ns2bgos4dbd5gtksqz872w9645zfbih35u.png)
Answer: The amount she invest at each rate is $14,00 at 4% and $6,000 at 9.5%.