Answer:
The amount of pint of the first drink type is;
![9\text{ pints}](https://img.qammunity.org/2023/formulas/mathematics/college/cib5xjke66ibklnho8cv2r7090x9yjryss.png)
The amount of pint of the second drink type is;
![21\text{ pints}](https://img.qammunity.org/2023/formulas/mathematics/college/y201kpbx2v82ssosmgpj536shxc6ct0r5m.png)
Step-by-step explanation:
Let x represent the amount of pint of the first type
The amount of the second type will be;
![30-x](https://img.qammunity.org/2023/formulas/mathematics/college/u6xukqx4cxpwmoveudmgs1ytnwlpjxpo3m.png)
Since the total amount of the mixture is 30 pint.
Equating the amount of pure fruit in each type to that of the mixture.
![\begin{gathered} \text{first type = 35\% =0.35} \\ \text{second type = 85\% = 0.85} \\ \text{Mixture = 70\% = 0.70} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/by4hzuozaazko3heolypc35shsgi8l5jok.png)
We have;
![0.35(x)+0.85(30-x)=0.70(30)](https://img.qammunity.org/2023/formulas/mathematics/college/q913ft98hrydj9mt1rrxbnwy2gpb7g6i1a.png)
solving for x;
![\begin{gathered} 0.35(x)+0.85(30)-0.85(x)=0.70(30) \\ 0.35x-0.85x+25.5=21 \\ -0.50x=21-25.5 \\ -0.50x=-4.5 \\ (-0.50x)/(-0.50)=(-4.5)/(-0.50) \\ x=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ut431qy0asvw2v2c0q9cczfdoc0e9w15d8.png)
The amount of pint of the first type is;
![9\text{ pints}](https://img.qammunity.org/2023/formulas/mathematics/college/cib5xjke66ibklnho8cv2r7090x9yjryss.png)
So, the amount of pint of the second type will be;
![\begin{gathered} 30-x=30-9 \\ =21 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k5vwqs76v6fn3v7cmpz8se3nbaw8so3s3b.png)
The amount of pint of the second type is;
![21\text{ pints}](https://img.qammunity.org/2023/formulas/mathematics/college/y201kpbx2v82ssosmgpj536shxc6ct0r5m.png)