Answer:
![\begin{gathered} x=\sqrt[]{35}=5.62 \\ y=\sqrt[]{60}=7.75 \\ z=\sqrt[]{84}=9.17 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ojrhbhfx6b41dxgeqgfzgrqn7pvi31z7t4.png)
Step-by-step explanation: We need to find x y z, three missing sides:
From the given triangle, we can form three equations, using the Pythagorean theorem as:

Solution by substitution:
Substituting (1) in (3) gives:

We have reached equation (4), solving for z in equation (4), and then substituting it into equation (2) gives:
![\begin{gathered} 7^2+x^2=119-x^2\rightarrow2x^2=119-49=70 \\ \therefore\rightarrow \\ x=\sqrt[]{(70)/(2)}=\sqrt[]{35}=5.916 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/s6zdggwnd7nk3w0fivq9xj4wh6pim1mkbs.png)
Plugging this x into equation (4) gives:
![\begin{gathered} z^2+(\sqrt[]{35})^2=119\rightarrow z^2=119-35=84 \\ \therefore\rightarrow \\ z=\sqrt[]{84}=9.165 \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mgwhp0gccl8dpo1s83raw54pxaywvbouwf.png)
Now that we have x and z, we plug x it into equation (1) and we get:
![\begin{gathered} 5^2+(\sqrt[]{35})^2=y^2 \\ \therefore\rightarrow \\ y^2=25+35=60 \\ y=\sqrt[]{60}=7.75 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xyo1jgqxn9t3m87bxt1btf9q03tjt5tvl4.png)
x y z respectively are:
![\begin{gathered} x=\sqrt[]{35}=5.62 \\ y=\sqrt[]{60}=7.75 \\ z=\sqrt[]{84}=9.17 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ojrhbhfx6b41dxgeqgfzgrqn7pvi31z7t4.png)