83.7k views
2 votes
Write each as a single logarithm . Assume they’re all positive numbers

Write each as a single logarithm . Assume they’re all positive numbers-example-1
User Moha
by
7.2k points

1 Answer

4 votes

Solution (b):

Given the logarithm;


4\log_6x+5\log_6y

Following the addition property and power property of logarithm written as;


\begin{gathered} \log_ca+\log_cb=\log_c(ab) \\ \\ b\log_ca=\log_c(a)^b \end{gathered}

Thus;


\begin{gathered} 4\operatorname{\log}_6x+5\operatorname{\log}_6y=\log_6(x)^4+\log_6(y)^5 \\ \\ 4\operatorname{\log}_6x+5\operatorname{\log}_6y=\log_6(x^4y^5) \end{gathered}

ANSWER:


\begin{equation*} \log_6(x^4y^5) \end{equation*}

Solution (d):

Given;


2\log_3x+(1)/(3)\log_3x-2\log_3(x+1)
\begin{gathered} 2\operatorname{\log}_3x+(1)/(3)\operatorname{\log}_3x-2\operatorname{\log}_3(x+1)=\log_3(x)^2+\log_3(x)^{(1)/(3)}-\log_3(x+1)^2 \\ \\ 2\operatorname{\log}_3x+(1)/(3)\operatorname{\log}_3x-2\operatorname{\log}_3(x+1)=\log_3(\frac{x^2* x^{(1)/(3)}}{(x+1)^2}) \\ \\ 2\operatorname{\log}_3x+(1)/(3)\operatorname{\log}_3x-2\operatorname{\log}_3(x+1)=\log_3(\frac{x^{2+(1)/(3)}}{x^2+2x+1}) \\ \\ 2\operatorname{\log}_3x+(1)/(3)\operatorname{\log}_3x-2\operatorname{\log}_3(x+1)=\log_3(\frac{x^{(7)/(3)}}{x^2+2x+1}) \end{gathered}

ANSWER:


\begin{equation*} \log_3(\frac{x^{(7)/(3)}}{x^2+2x+1}) \end{equation*}

User Vlad Balmos
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories