the answer is 26 grams
Step-by-step explanation
We can determine the amount of a radioactive isotope remaining after a given number half-lives by using the following expression:
![\text{amount remaining= Initial amoutn (}(1)/(2))^n](https://img.qammunity.org/2023/formulas/mathematics/college/bw7tmr2xx7yvf66xgbh0etikm0sq5sizcw.png)
where n is the time
Step 1
Let
![\begin{gathered} \text{ Initial amount= 210 grams} \\ n=\text{ 3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pqke9n51ndjgzr5i7sf5fm80m5bhw6gm52.png)
replace
![\begin{gathered} \text{amount remaining= Initial amoutn (}(1)/(2))^n \\ \text{amount remaining= 210 (}(1)/(2))^3 \\ \text{amount remaining= 210 (}(1)/(8))^{} \\ \text{amount remaining= }26.25 \\ \text{rounded} \\ \text{amount remaining=}26 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g97i2ixvuj8o9s25axq4vl3ws2ig7zpj5v.png)
so, the answer is 26 grams
i hope this helps you