1.11 miles
Step-by-step explanation
Step 1
Diagram
so
a)let
for runner A
![\begin{gathered} distance\text{ traveled by runner A=}x \\ velocity_A=5(mi)/(h) \\ time\text{ taken=t}_1 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/28pwlw0mjs3vftxc64bwd4hlrxz4zv9js4.png)
for runner B
![\begin{gathered} distance\text{ = y} \\ velocity_B=4\text{ }(mi)/(h) \\ time_2=time_1=(\text{ the same time taken when they meet\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/9ktbxz3fyu1ijjqbkvxwm858h3wn04sp3z.png)
also we know that
![x+y=7\text{ }\Rightarrow equation\text{ \lparen1\rparen}](https://img.qammunity.org/2023/formulas/physics/high-school/yqitiv51t3epjpykjzpuma2io7xwgt5waq.png)
b) to set the equation, we need to apply the formula
![time=\text{ }\frac{distance\text{ }}{speed}](https://img.qammunity.org/2023/formulas/physics/high-school/5tqc74yp00rfl53quzrk20vamseg2atyfl.png)
so
![\begin{gathered} time_1=time_2 \\ replace \\ (x)/(5(m)/(s))=(y)/(4(m)/(s)) \\ (x)/(5)=(y)/(4) \\ cross\text{ multiply} \\ 4x=5y \\ divide\text{ both sides by 4} \\ (4x)/(4)=(5y)/(4) \\ x=(5)/(4)y\Rightarrow equation\text{ \lparen2\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/dwuj10n1yy5sgiizsb3ukbm4kz2at50sth.png)
Step 2
solve the equations
![\begin{gathered} x+y=7\operatorname{\Rightarrow}equat\imaginaryI on\operatorname{\lparen}\text{1}\operatorname{\rparen} \\ x=(5)/(4)y\operatorname{\Rightarrow}equat\imaginaryI on\operatorname{\lparen}\text{2}\operatorname{\rparen} \end{gathered}]()
replace the x value from equation (2) into equation(1) and solve for y
![\begin{gathered} x+y=7\operatorname{\Rightarrow}eq(1) \\ (5)/(4)y+y=7 \\ (9)/(4)y=7 \\ Multiply\text{ both sides by 4/9} \\ (9)/(4)y*(4)/(9)=7*(4)/(9) \\ y=(28)/(9)=3.11 \end{gathered}]()
finally, replace in eq ( 1) to find the x value
![\begin{gathered} x+y=7\operatorname{\Rightarrow} \\ x+3.11=7 \\ subtract\text{ 3.11 in both sides} \\ x+3.11-3.11=7-3.11 \\ x=3.89 \end{gathered}]()
so, they are
so,they are
1.11 miles far away from the flagpole