31.6k views
0 votes
Given v = 5i - j and w = 3i+5j, find the angle between v and w

Given v = 5i - j and w = 3i+5j, find the angle between v and w-example-1
User Warisara
by
5.2k points

1 Answer

7 votes

To solve this problem, we will use the dot product, recall that:


u\cdot v=\parallel u\parallel\parallel v\parallel\cos \theta.

Where u and v are two vectors.

From the above definition, we get that:


\theta=\cos ^(-1)((u\cdot v)/(\parallel u\parallel\parallel v\parallel)).

Substituting the given vectors in the formula, we get:


\theta=\cos ^(-1)(((5i-j)\cdot(3i+5j))/(\parallel5i-j\parallel\parallel3i+5j\parallel)).

Now, recall that:


\begin{gathered} (ai+bj)\cdot(ci+dj)=(a\cdot b)+(c\cdot d)\text{.} \\ \parallel ai+bj\parallel=a^2+b^2. \end{gathered}

Therefore:


\theta=\cos ^(-1)((15-5)/(√(26)+√(34)))=\cos ^(-1)(\frac{10}{\sqrt[]{26}+\sqrt[]{34}})\text{.}

Simplifying we get:


\theta\approx70.3^(\circ).

Answer:


\theta=70.3^(\circ)\text{.}

User Gflegar
by
5.5k points