Answer:
The complex number a+ib is;
![1+i\sqrt[]{3}](https://img.qammunity.org/2023/formulas/mathematics/college/85x00ckn9kowql30i4t5cwh5s0wtotdm4p.png)
Step-by-step explanation:
Given the complex number;

The modulus of the complex number is given as;
![\begin{gathered} \sqrt[]{a^2+b^2}=2 \\ a^2+b^2=2^2 \\ a^2+b^2=4 \\ a^2=4-b^2\text{ -------- 1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y3txiimjnunezydwwad1d17hhugq3mglk5.png)
Also the argument of the complex number;
![\begin{gathered} arg(z)=\tan ^(-1)((b)/(a))=(\pi)/(3) \\ (b)/(a)=\tan ((\pi)/(3)) \\ (b)/(a)=\sqrt[]{3} \\ b=a\sqrt[]{3}--------2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kxmx5fa029z7qb98bh1lhud52nab75bv7s.png)
substituting equation 2 into equation 1;
![\begin{gathered} a^2=4-b^2\text{ } \\ a^2=4-(a\sqrt[]{3})^2\text{ } \\ a^2=4-a^2(3) \\ a^2+3a^2=4 \\ 4a^2=4 \\ a^2=(4)/(4) \\ a^2=1 \\ a=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a7s3ygrbt4zt5mi1tvc6zke0djlxfkqd0h.png)
Substituting a=1 into equation 2;
![\begin{gathered} b=a\sqrt[]{3} \\ b=1*\sqrt[]{3} \\ b=\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/drtqcwgw3k8ue4bw00qc70u95id4iedfmi.png)
Therefore, the complex number a+ib is;
![1+i\sqrt[]{3}](https://img.qammunity.org/2023/formulas/mathematics/college/85x00ckn9kowql30i4t5cwh5s0wtotdm4p.png)