60.7k views
0 votes
Question 13IT, pre calc, I am at work so please answer so I can review it later tonight, thanks

Question 13IT, pre calc, I am at work so please answer so I can review it later tonight-example-1

1 Answer

3 votes

Step-by-step explanation

Dividing the numerator and denominator by the highest denominator power (x^2):


=\lim _(x\to\: -\infty\: )\mleft(((1)/(x)+(1)/(x^2))/(1-(2)/(x))\mright)

Applying the following property:


\lim _(x\to a)\mleft[(f\left(x\right))/(g\left(x\right))\mright]=(\lim_(x\to a)f\left(x\right))/(\lim_(x\to a)g\left(x\right)),\: \quad \lim _(x\to a)g\mleft(x\mright)\\e0


With\: the\: exception\: of\: indeterminate\: form


=(\lim_(x\to\:-\infty\:)\left((1)/(x)+(1)/(x^2)\right))/(\lim_(x\to\:-\infty\:)\left(1-(2)/(x)\right))


=(\lim_(x\to\: -\infty\: )((1)/(x)+(1)/(x^2)))/(\lim_(x\to\: -\infty\: )(1-(2)/(x)))=(0)/(1)=0

Now, we need to apply the same steps to x-> ∞


\mathrm{Apply\: the\: following\: algebraic\: property}\colon\quad a+b=a\mleft(1+(b)/(a)\mright)


(x+1)/(x^2-2x)=(x\left(1+(1)/(x)\right))/(x^2\left(1-(2)/(x)\right))


=\lim _(x\to\infty\: )\mleft((x\left(1+(1)/(x)\right))/(x^2\left(1-(2)/(x)\right))\mright)

Simplifying:


=\lim _(x\to\infty\: )\mleft((1+(1)/(x))/(-2+x)\mright)


\lim _(x\to a)\mleft[(f\left(x\right))/(g\left(x\right))\mright]=(\lim_(x\to a)f\left(x\right))/(\lim_(x\to a)g\left(x\right)),\: \quad \lim _(x\to a)g\mleft(x\mright)\\e0


\mathrm{With\: the\: exception\: of\: indeterminate\: form}


=(\lim_(x\to\infty\:)\left(1+(1)/(x)\right))/(\lim_(x\to\infty\:)\left(-2+x\right))


=(1)/(\infty\:)


\mathrm{Apply\: Infinity\: Property\colon}\: (c)/(\infty)=0


=0

In conclusion, the appropiate end behavior is as follows:


\lim _(x\to-\infty)f(x)=0;\text{ }lim_(x\to\infty)f(x)=0

User Milan Pandey
by
3.4k points