Step-by-step explanation
From the statement, we know that the speed of the cheetah is:
![S=1.73*(km)/(m\imaginaryI n).](https://img.qammunity.org/2023/formulas/mathematics/college/r6z4xypi1p4bf8ygaesk8tapq7mcay3804.png)
We have the following ratios:
![\begin{gathered} 1=\frac{60\text{ min}}{1\text{ h}}, \\ 1=\frac{1\text{ mi}}{1.61\text{ km}}. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6jnfh4ewxpmxs9uxeb02uat4u78gacarvp.png)
1) To convert the speed from km/min to mi/h, we rewrite the expression using the first ratio:
![S=1.73*(km)/(m\imaginaryI n)*1=1.73*\frac{\text{km}}{\text{m}\mathrm{i}\text{n}}*\frac{60\text{ min}}{1h}=1.73*60*(km)/(h).](https://img.qammunity.org/2023/formulas/mathematics/college/l8h5xrpnt3bq1lodttu2yhyqjoqivligwv.png)
2) Now, we use the second ratio:
![S=1.73*60*(km)/(h)*1=1.73*60*(km)/(h)*\frac{1\text{ mi}}{1.61km}=(1.73*60)/(1.61)*(mi)/(h).](https://img.qammunity.org/2023/formulas/mathematics/college/fopes5t8a4dx6rvlf4m82zttborp9hz0ef.png)
3) Finally, computing the product and quotient, we get:
![S\cong64.5(mi)/(h).](https://img.qammunity.org/2023/formulas/mathematics/college/3ylhfobmazxew527j5b8lwsxdmmfugspmh.png)
Answer
64.5 mi/h