Hello!
First, we have to find the radius of this circumference. We can obtain it using the formula to calculate the distance between two points, look:
![\begin{gathered} d=√((x_2-x_1)^2+(y_2-y_1)^2) \\ d=√((-12-(-12))^2+(9-7)^2) \\ d=√((-12+12)^2+(2)^2) \\ d=√(0+4) \\ d=√(4) \\ d=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/52sylvioqi5z3j905ik2mup4m8rcdvarce.png)
So, we know that:
• Center,: (-12, 7)
,
• Radius,: 2
To write the equation of the circle, we must use the formula below:
![(x-x_C)^2+(y-y_C)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/oc9y6oxo6109vebjmpwwwh1j9lbsvxjq9m.png)
So, let's replace it with the values in the topics:
![\begin{gathered} (x--12)^2+(y-7)^2=2^2 \\ (x+12)^2+(y-7)^2=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yzg0cvm1pbf3qvaix796na9xa6j51sacky.png)
Look at it in the cartesian point below:
Answer:
(x+12)² + (y -7)² = 4