First, let's find the equivalent capacitance of the capacitors connected in series.
We can find it using the following formula:
![\begin{gathered} (1)/(Ceq1)=(1)/(C1)+(1)/(C2) \\ so: \\ (1)/(Ceq1)=(1)/(3.64)+(1)/(4.67) \\ Ceq1=2.05F \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/69gn0zs1b19o3ucceiv6ivp7urgzdh5se6.png)
Now we can find the equivalent capacitance of the capacitors connected in parallel using the following formula:
![\begin{gathered} C_(eq)=Ceq1+C3 \\ C_(eq)=2.05F+7.16F \\ C_(eq)\approx9.21F \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/aotrm90xqq46yxth2z676qgvr4v36p4aiv.png)
Answer:
9.21 F