The figure has the following points
![\begin{gathered} \text{target T} \\ T(6,2) \\ \text{Mcdonald D} \\ D(1,4) \\ \text{Sam CLub S} \\ S(6,6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f0obgr9d6jxm8o2267ivduot6sriv29ry6.png)
In other to get the distance between McDonald's and Sam Club using Pythagoras theorem
Let the distance between Mcdonald and Sam Club be MS, it follows that
![\begin{gathered} MC^2=5^2+2^2 \\ MC^2=25+4 \\ MC^2=29 \\ MC=\sqrt[]{29} \\ MC=5.385 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oea0ed1270x24nzsulnf8yp1takdy8kbch.png)
a) Hence, the distance between Mcdonald's and Sam Club is 5.385
b) To get the distance between Mcdonald's and Target using the distance formula
The distance formula is given as
![\begin{gathered} A(x_1,y_1);B(x_2,y_2) \\ AB=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eu5v398muf4atyq0jhotnh257vu5bep0w0.png)
![\begin{gathered} M(1,4) \\ T(6,6) \\ MT=\sqrt[]{(6-4)^2+(6-1)^2} \\ MT=\sqrt[]{2^2+5^2} \\ MT=\sqrt[]{4+25} \\ MT=\sqrt[]{29} \\ MT=5.385 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2oa8e75zr4v7dzpgamuxrr56wr48ive7ev.png)
b) Hence, the distance between Mcdonald's and Target using the distance formula is 5.385
c) The midpoint formula is given as
![((x_1+x_2)/(2),(y_1+y_2)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/b6ezm84zxxqzwlktnyn6xpt1axi8omhbm3.png)
The midpoint of between McDonald's and Sam Club is
![\begin{gathered} M(1,4);S(6,6)^{} \\ \text{midpoint}=((6+1)/(2),(6+4)/(2)) \\ =((7)/(2),(10)/(2)) \\ =((7)/(2),5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ypubw6oczs4it61kmc0k4reqzs1k236i9o.png)
Hence, the midpoint between McDonald's and Sam Club is (7/2,5)