First, we should identify the coordinates of the vertices of the triangle UVW.
The coordinates of the vertices are:
U(0,3)
V(6,6)
W(6, 0)
We can find the coordinates of the resulting triangle after dilation, given that the center of dilation is the origin using the relationship:
![(x,\text{ y) }\rightarrow\text{ (kx, ky)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kiub9re4xclk1pn0uv0ry206c94v87ck9b.png)
Where k is the scale factor
Applying this rule to the original coordinates of the triangle UVW, we have the new coordinates to be:
![\begin{gathered} U^(\prime)((0)/(3),(3)/(3))\text{ = U'(0, 1)} \\ V^(\prime)((6)/(3),\text{ }(6)/(3))\text{ = V'(2, 2)} \\ W^(\prime)((6)/(3),\text{ }(0)/(3))\text{ = W'(2, 0)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/u4bs6uzqml5eiuze8kzb28bklxab6fkcab.png)
Hence, the coordinates of the resulting triangle are:
U'(0, 1)
V'(2,2)
W'(2,0)
Answer:
Option D