Given:
There are given that inequality:
![-36\leq2x+4(x-3)](https://img.qammunity.org/2023/formulas/mathematics/college/6c1cta0euiuka613btuxsqra09xqosg3pi.png)
Step-by-step explanation:
According to the question:
We need to solve the above-given inequality:
![\begin{gathered} -36\leqslant2x+4(x-3) \\ -36\leqslant2x+4x-12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cpf49ztmrd6o3pdj6w8l5zw9t5orfr04eu.png)
Then,
![\begin{gathered} -36\leqslant2x+4x-12 \\ -36\leqslant6x-12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2bcwuj7r37coc4260xmfymzhz14kfz0u0c.png)
Then,
![6x-12\ge-36](https://img.qammunity.org/2023/formulas/mathematics/college/yqcwx1rz1k8a3krf4gxrmqczrx4glvjnv2.png)
Then,
Add 12 on both sides of the equation:
![\begin{gathered} 6x-12\geqslant-36 \\ 6x-12+12\geqslant-36+12 \\ 6x\ge-24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e032d12b9cj9gupt4u3ezmote4oeds5byz.png)
Then,
Divide by 6 on both sides of the equation:
So,
![\begin{gathered} 6x\geqslant-24 \\ (6x)/(6)\geqslant(-24)/(6) \\ x\ge-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/olpsccxpaf511ahvrslhwnqti2dd02n87z.png)
We can see that the value of x is greater than and equal to -4.
Final answer:
Hence, the correct option is B.