Given:
The angle of incidence is,
![i=42\degree](https://img.qammunity.org/2023/formulas/physics/high-school/a3wxiel7impl9hqqeszl2osvajm661xdg0.png)
The refractive index of the crown glass for red light is,
![n_r=1.515](https://img.qammunity.org/2023/formulas/physics/high-school/u4vc8asg4zmikim2pnfh6nll52b5ggrbuc.png)
The refractive index of the crown glass for blue light is,
![n_b=1.523](https://img.qammunity.org/2023/formulas/physics/high-school/sup50xeje78dv7p1awpjoc6rva31nlupqz.png)
To find:
The angle separating rays of the two colours in a piece of crown glass
Step-by-step explanation:
We know, Snell's law,
![n_1sini=n_2sinr](https://img.qammunity.org/2023/formulas/physics/high-school/m4kv5i3n18pvriznm4wrl327jr0my9goah.png)
For, the red light,
![\begin{gathered} 1* sin42\degree=1.515sinr_r \\ sinr_r=(sin42\degree)/(1.515) \\ r_r=sin^(-1)(0.4417) \\ r_r=26.2\degree \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/et9o1no4c2p1bgrquf1ctywue5757xoeny.png)
For, the blue light,
![\begin{gathered} 1* sin42\degree=1.523sinr_b \\ r_b=sin^(-1)(sin42\degree)/(1.523) \\ r_b=26.1\degree \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/8fe94lmrahezvs7peg77hmf2mkjkmqb96o.png)
The separation between the refracted rays is,
![\begin{gathered} r_r-r_b=26.2\degree-26.1\degree \\ =0.1\degree \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/g1iizcdytucark9wxvuvgjcyifpajah16y.png)
Hence, the required separation is 0.1 degrees.