SOLUTION
The length of the line segment will be calculated using the distance formula
The distance formula is given as
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/ryn3fzehb0ozllfgi4eom8sc1fxhgg6wgd.png)
The line segment have the points U(3,-5) and V(-5,-9)
Therefoore the length of the line segment is:
![UV=√((-5-3)^2+(-9-(-5))^2)](https://img.qammunity.org/2023/formulas/mathematics/college/mei8kje433hd7dhfdekpz6b47besifh3mj.png)
Calculate the value:
![\begin{gathered} UV=√((8)^2+(-4)^2) \\ UV=√(64+16) \\ UV=√(80) \\ UV=4√(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d0lcakqlb3rhcob4a1jshixyyyarpvhp3m.png)
Therefore the length of the line segment is
![4√(5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/xd0cpdtlk4tgq5c8owtior8bwq4jw0mfhk.png)
The equation of the line segment wil be determined using
![y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/hkbzvop4iz62zgm93u190774353c4ig6id.png)
Therefore using the given points the equation of the line is:
![\begin{gathered} y-(-5)=(-9-(-5))/(-5-3)(x-3) \\ y+5=(-4)/(-8)(x-3) \\ y+5=(1)/(2)x-(3)/(2) \\ y=(1)/(2)x-(3)/(2)-5 \\ y=(1)/(2)x-(13)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l1g3wvnfpsgkjog2xm18k1n5xa11o8k28y.png)
Therefore the equation of the line segment is:
![y=(1)/(2)x-(13)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/2ztzp668erkij43h8pwbpila3r9gf0diws.png)