230k views
2 votes
What is the solution to the system of equations? -7x - 2y + z = -2 6x - y - z = -18 5x + 4y - z = 18 a) (7, -1, 45) b) (-1, 7, 5) c) (-1, 7, 9) d) (1, -7, -5)

User Joey Gough
by
9.0k points

1 Answer

0 votes

Given the system of equations as shown below


\begin{gathered} -7x\text{ -2y+z = -2 ------ equation 1} \\ 6x-y-z=-18\text{ ------ equation 2} \\ 5x+4y-z\text{ = 18 ------- equation 3} \end{gathered}

The above system of equations can be expressed in the matrix form


\begin{gathered} A* X\text{ = B} \\ \Rightarrow X=A^(-1)*\text{ B} \\ \text{where} \\ X\text{ is the matrix of unkown variables (x, y, z)} \\ A^(-1)\text{ is the inverse matrix of matrix A} \\ B\text{ is the matrix B} \end{gathered}

Thus, we have


\begin{gathered} \begin{bmatrix}{-7} & {-2} & {1} \\ {6} & {-1} & {-1} \\ {5} & {4} & {-1}\end{bmatrix}*\begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {z} & {} & {}\end{bmatrix}=\begin{bmatrix}{-2} & {} & {} \\ {-18} & {} & {} \\ {18} & {} & {}\end{bmatrix} \\ A* X\text{ = B} \end{gathered}

This implies that


\begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {z} & {} & {}\end{bmatrix}=\begin{bmatrix}{-7} & {-2} & {1} \\ {6} & {-1} & {-1} \\ {5} & {4} & {-1}\end{bmatrix}^(-1)*\begin{bmatrix}{-2} & {} & {} \\ {-18} & {} & {} \\ {18} & {} & {}\end{bmatrix}

Where


\begin{gathered} X=\begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {z} & {} & {}\end{bmatrix} \\ A^(-1)=\text{ }\begin{bmatrix}{-7} & {-2} & {1} \\ {6} & {-1} & {-1} \\ {5} & {4} & {-1}\end{bmatrix}^(-1) \\ B=\text{ }\begin{bmatrix}{-2} & {} & {} \\ {-18} & {} & {} \\ {18} & {} & {}\end{bmatrix} \end{gathered}

Solving for X Using crammer's rule, which states that


\begin{gathered} x=(D_x)/(D) \\ y=(D_y)/(D) \\ z=(D_z)/(D) \\ ^{}where_{} \\ D,D_x,D_y,D_z\text{ are }\det er\min ants\text{ } \end{gathered}

To find the deteminant D,

From the matrix A,


\begin{gathered} A\text{ = }\begin{bmatrix}{-7} & {-2} & {1} \\ {6} & {-1} & {-1} \\ {5} & {4} & {-1}\end{bmatrix} \\ \\ D=-7\cdot\det \begin{pmatrix}-1 & -1 \\ 4 & -1\end{pmatrix}-\mleft(-2\mright)\det \begin{pmatrix}6 & -1 \\ 5 & -1\end{pmatrix}+1\cdot\det \begin{pmatrix}6 & -1 \\ 5 & 4\end{pmatrix} \\ \Rightarrow-7(1+4)+2(-6+5)+1(24+5) \\ =-7(5)+2(-1)+1(29) \\ =-8 \end{gathered}

Thus, D = -8

To find x,


\begin{gathered} x=(D_x)/(D) \\ D_x\text{ = }\det er\min ant{\text{ of }\begin{bmatrix}{-2} & {-2} & {1} \\ {-18} & {-1} & {-1} \\ {18} & {4} & {-1}\end{bmatrix}} \\ \Rightarrow D_x=\text{ -2(1-(-4))-(-2)(18}-(-18))+1(-72-(-18)) \\ =-2(5)+2(36)+1(-54) \\ =-10+54-72 \\ =8 \\ Thus, \\ x\text{ = }(D_x)/(D)\text{ =}(8)/(-8)=-1 \end{gathered}

To find y,


\begin{gathered} y=\text{ }(D_y)/(D) \\ D_y\text{ = }\det er\min ant\text{ of }\begin{bmatrix}{-7} & {-2} & {1} \\ {6} & {-18} & {-1} \\ {5} & {18} & {-1}\end{bmatrix} \\ D_y\text{ = -7(18-(-18))-(-2)(-6-(-5))+1(108-(-90))} \\ =-7(36)+2(-1)+1(198) \\ =-56 \\ \text{Thus,} \\ y=\text{ }(D_y)/(D)=(-56)/(-8)=7 \end{gathered}

To find z,


\begin{gathered} z=\text{ }(D_z)/(D) \\ D_z\text{ = }\det er\min ant\text{ of }\begin{bmatrix}{-7} & {-2} & {-2} \\ {6} & {-1} & {-18} \\ {5} & {4} & {18}\end{bmatrix} \\ =-7(-18-(-72))-(-2)(108-(-90)+(-2)(24-(-5)) \\ =-7(54)+2(198)-2(29) \\ =-40 \\ \text{Thus,} \\ z=\text{ }(D_z)/(D)=-(-40)/(-8)=5 \end{gathered}

Hence, the solution to the system of equations is

(-1, 7, 5).

The correct option is B.

User Ethan Furman
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.