Given: -9i zero and
![f(x)=x^4+11x^3+99x^2+891x+1458](https://img.qammunity.org/2023/formulas/mathematics/college/wds7eo5sx18qsmhujcj1ua53zm1litkfgl.png)
Find: root of the given eqaution.
Step-by-step explanation: if -9i is thr one root of the equation then 9i wll be the another root of the equation.
-9i (x+9i)
9i (x-9i)
that means (x+9i)(x-9i) will be divide by the given equation.
![(x+9i)(x-9i)=(x^2+81)](https://img.qammunity.org/2023/formulas/mathematics/college/btwapnmrq7fmb5jjh5b0pzbz7zopgiajad.png)
when we divide it to the given equation we get,
![x^2+11x+18](https://img.qammunity.org/2023/formulas/mathematics/high-school/asgy8lkrfr70rn3wa2ocgal0wt6sz3ca5x.png)
on solving it
![\begin{gathered} x^4+11x^3+99x^2+891x+1458=(x+9i)(x-9i)(x^2+11x+18) \\ =(x+9i)(x-9i)(x+2)(x+9) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mbid90a0hedjp80ahmyejklv2id48i9jxq.png)
Hence,the other roots of the given eqaution is -2 and -9.
Final answer: the required roots of the equation is 9i,-9i,-2,-9.