122k views
2 votes
Solve the polynomial equation give all solutions real and imaginary x^3+64=0

User Bhavin
by
8.1k points

1 Answer

1 vote

ANSWER


\begin{gathered} x=-4 \\ x=2+2\sqrt[]{3i} \\ x=2-2\sqrt[]{3i} \end{gathered}

Step-by-step explanation

We want to solve the polynomial:


x^3+64=0

First, subtract 64 from both sides of the equation:


\begin{gathered} x^3+64-64=0-64 \\ x^3=-64 \end{gathered}

For a cubic polynomial in the form x³ = f(a), the solutions are:


x=\sqrt[3]{f\left(a\right)},\: \sqrt[3]{f\left(a\right)}(-1-√(3)i)/(2),\: \sqrt[3]{f\left(a\right)}(-1+√(3)i)/(2)

From the given polynomial, f(a) = -64

Therefore, the solutions of the polynomial are:


\begin{gathered} x=\sqrt[3]{-64};,\: \sqrt[3]{-64}\frac{-1-\sqrt[]{3}i}{2};\text{ }\sqrt[3]{-64}\frac{-1+\sqrt[]{3}i}{2} \\ \Rightarrow x=-4;-4\cdot\frac{-1-\sqrt[]{3}i}{2};-4\cdot\frac{-1+\sqrt[]{3}i}{2} \\ \Rightarrow x=-4;-2\cdot-1-\sqrt[]{3}i;-2\cdot-1+\sqrt[]{3}i \\ \Rightarrow x=-4;x=2+2\sqrt[]{3i};x=2-2\sqrt[]{3i} \end{gathered}

Those are the solutions.

User Kamal Pal
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories