we have that
JK=JP+PK -----> by the three points are collinear
and
JP/JK=1/3 -----> JK=3JP -----> equation A
substitute
3JP=JP+PK
2JP=PK ------> equation B
Find out the distance JK
we have
J(-4,11) and K(8,-1)
substitute in the formula of distance between two points
![JK=\sqrt[\square]{(-1-11)^2+(8+4)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/j8n3qwuia50mx2m7tbn3nza8f0f1gyoioq.png)
![JK=12\sqrt[\square]{2^{}}](https://img.qammunity.org/2023/formulas/mathematics/college/17r48nmaxh67yn8vymbq46oviofi9w1i0d.png)
equation A
JK=3JP
![\begin{gathered} 12\sqrt[\square]{2}=3JP \\ JP=4\sqrt[\square]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/59weedbe0j14zi20mjioejd340xsidw9iv.png)
we have the distance JP
substitute in the formula of distance
![4\sqrt[\square]{2}=\sqrt[\square]{(x+4)^2+(y-11)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/6z754qss7055li1ewdwondlzyzprcumyxw.png)
squared both sides
![32=(x+4)^2+(y-11)^2\text{ ----}\longrightarrow\text{ equation C}](https://img.qammunity.org/2023/formulas/mathematics/college/i8ex2ayk66bj5n82iudow0o3lmzrjoqq1i.png)
equation B
2JP=PK
![2(4\sqrt[\square]{2})=\sqrt[\square]{(x-8)^2+(y+1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/ob4c164norzx4nkmz4pjk0rkzzmnsc0vu6.png)
squared both sides
![128=(x-8)^2+(y+1)^2\text{ ---}\longrightarrow\text{ equation D}](https://img.qammunity.org/2023/formulas/mathematics/college/s26ti969q8sfgrblh18h8pixhpxswc7pq9.png)
Solve the system of equations C and D
the graphs are circles
the solution is the intersection points both graphs
see the attached figure to better understand the problem
the solution is the point (0,7)
the coordinates of P are (0,7)