Given that:
Rate at which the hits occur between 7 PM and 10 PM = 1.4 per minute
Then:
Number of hits between 9:30 AM and 9:35 AM
![\begin{gathered} =5\cdot(1.4) \\ =7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cqfqt7zxh1ew0vap0xsqbm0gnivvt1pfyp.png)
The probability distribution function of Poisson distribution is
![P(X=x)=(e^(-\lambda)\lambda^x)/(x!)](https://img.qammunity.org/2023/formulas/mathematics/college/eyp86ymlb7wyftmyctwta1qhg30blare7d.png)
(a) P(x=4)
![\begin{gathered} =(e^(-7)7^4)/(4!) \\ =0.0912 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sbmx02fmr0xifcomkl6wkpb9ldjyfnh5oj.png)
(b) P(x < 4) = P(x=0)+P(x=1)+P(x=2)+P(x=3)
![\begin{gathered} =(e^(-7)7^0)/(0!)+(e^(-7)7^1)/(1!)+(e^(-7)7^2)/(2!)+(e^(-7)7^3)/(3!) \\ =e^(-7)+7e^(-7)+(49e^(-7))/(2)+(343e^(-7))/(6) \\ =0.0818 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hodk2ydpj7dqwb8sovu5uzgnuh4gfz1xvf.png)
(c) To find
![\begin{gathered} P(x\ge4)=1-P(x<4) \\ =1-0.0818 \\ =0.9182 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ua82zup4k3jqw8w48dcy67hsc5edsk2soy.png)