Solution:
Given:

Let one leg be represented by x.
Hence,

The right triangle can be represented as shown below;
To solve for x, we use the Pythagoras theorem.

Hence,

Solving the quadratic equation by formula method,
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
For the equation,

Substituting these values into the formula,
![\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x=\frac{-4\pm\sqrt[]{4^2-(4*1*-24)}}{2*1} \\ x=\frac{-4\pm\sqrt[]{16^{}-(-96)}}{2} \\ x=\frac{-4\pm\sqrt[]{16+96^{}}}{2} \\ x=\frac{-4\pm\sqrt[]{112}}{2} \\ x=(-4\pm10.58)/(2) \\ x_1=(-4+10.58)/(2)=(6.58)/(2)=3.29 \\ x_2=(-4-10.58)/(2)=(-14.58)/(2)=-7.29 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/or73s4ihusn5d51m7xic5i324ojsitfnrq.png)
Since we are dealing with the length of a triangle, we discard the negative value.
Hence,

The length of one side is 3.29
The other side that is 4 feet longer will be,

Therefore, the length of each leg to the nearest hundredth of a foot is;
