Solution
It is given that a man invested $2, 000
The Principal is $2, 000
rate is 6% = 0.06
When t = 19
![FV=2000(1+0.06)^(19)=2000(1.06)^(19)\approx\$6051](https://img.qammunity.org/2023/formulas/mathematics/college/ni0n2orw19va4fcvyvccykaizw88vicohp.png)
In 19 years there will be $6051
For the man to have a future value double of the man's investment;
![\begin{gathered} 4000=2000(1.06)^t \\ \\ \Rightarrow2=(1.06)^t \\ \\ \text{ taking }ln\text{ of bothn sides} \\ \\ \Rightarrow\ln2=t\ln(1.06) \\ \\ \Rightarrow t=(\ln2)/(\ln(1.06))\approx12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dtbiw3ak4x4qc34caipp7v15ltl3f39e15.png)
Therefore, it will take up to 12 years for the man's investment to double.