76.1k views
4 votes
Does the limit exists? What’s the value if it does exist?Calculus early transcendental functions

Does the limit exists? What’s the value if it does exist?Calculus early transcendental-example-1

1 Answer

3 votes

Answer


\text{The value is -}(1)/(3)

Given


\lim _(x\to\infty)(2x^2(x-3))/(3x^2(1-2x))

Solution

Let take the common factor first


(2)/(3)\lim _(x\to\infty)(x^2(x-3))/(x^2(1-2x))

Let's apply algebraic property:


a+b=a(1+(b)/(a))
\begin{gathered} (2)/(3).\lim _(x\to\infty)(x^2(x-3))/(x^2(1-2x)) \\ \\ (2)/(3).\lim _(x\to\infty)(x^2x(1-(3)/(x)))/(x^2x((1)/(x)-2)) \\ \\ x^2x\text{ can divide each other } \\ \\ (2)/(3).\lim _(x\to\infty)((1-(3)/(x)))/(((1)/(x)-2)) \end{gathered}

Let take the limit of the numerator


\begin{gathered} \lim _(x\to\infty)(1-(3)/(x))=1 \\ \end{gathered}

Also take the limit of the denominator


\lim _(x\to\infty)((1)/(x)-2)=-2


we\text{ now have }(1)/(-2)

Now, let not forget the common factor outside


(2)/(3).(1)/(-2)=(2)/(-6)=-(1)/(3)

So therefore, the Limit exist and the value is


-(1)/(3)

User Marvia
by
3.4k points