The polynomial is given to be:
![f(x)=-2x^2+14x+120](https://img.qammunity.org/2023/formulas/mathematics/college/az5hfy1c0zpfsoxqzuro5w7mn8tp0fo7gf.png)
FACTORING THE POLYNOMIAL
Step 1: Multiply the first and last term of the polynomial and get two numbers that will multiply to give the result and will add up to the middle term
![\begin{gathered} -2x^2*120=-240x^2 \\ Numbers=-10x,+24x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9expfv853qpmnc42g3934vneud4b0vi8hc.png)
Step 2: Replace the middle term with the two numbers gotten in Step 1 above
![f(x)=-2x^2-10x+24x+120](https://img.qammunity.org/2023/formulas/mathematics/college/a2yygcma9nj3gf8m7nq8qj0fmns3wtlvoj.png)
Step 3: Factor out the common term in each pair of numbers as shown below
![\begin{gathered} f(x)=(-2x^2-10x)+(24x+120) \\ f(x)=-2x(x+5)+24(x+5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kk8kg2kwu1tr940te75n0vz3l98rpfzjgd.png)
Step 4: Factor out the common term (x + 5)
![f(x)=(x+5)(-2x+24)](https://img.qammunity.org/2023/formulas/mathematics/college/7bffavffzw30hlm3k9y4jhmyyobju9xrpo.png)
Step 5: Factor out -2x from the term (-2x + 24)
![f(x)=-2(x+5)(x-12)](https://img.qammunity.org/2023/formulas/mathematics/college/dc6eturppsmuzubfcx15g5qabjpldsfby4.png)
The factored polynomial is:
![f(x)=-2(x+5)(x-12)](https://img.qammunity.org/2023/formulas/mathematics/college/dc6eturppsmuzubfcx15g5qabjpldsfby4.png)
ZEROES OF THE FUNCTION
The zeroes of the function are gotten at f(x) = 0
![f(x)=0](https://img.qammunity.org/2023/formulas/mathematics/college/pz6iwtpa64in4q7x3xfns8e4krnry8n9er.png)
Therefore, we have that:
![-2(x+5)(x-12)=0](https://img.qammunity.org/2023/formulas/mathematics/college/1prn708vkm1mipbi3isl3hc2d4yo0aa2n3.png)
Recall the Zero Factor Principle:
![\begin{gathered} \text{If} \\ ab=0 \\ \text{then} \\ a=0,b=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yice62b4ynl94swhcjic3gxzw03kyq5vmf.png)
Therefore, we have that:
![\begin{gathered} x+5=0 \\ \therefore \\ x=-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wogjcgyey5aqsvoqle4ha5b8ba2lei2uaw.png)
or
![\begin{gathered} x-12=0 \\ \therefore \\ x=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kj1bcgul0dgt4cblqc9o9jqkiiehw3kp5y.png)
Therefore, the zeroes of the function are:
![x=-5\text{ }or\text{ }x=12](https://img.qammunity.org/2023/formulas/mathematics/college/5vbur86zjl9fgse47blr6u1l1bagqlud5t.png)