Consider the given inequation,
![-10(c+3)+4c\ge90](https://img.qammunity.org/2023/formulas/mathematics/college/zy4yjp1t0f2zmwofv9y4yymuzsokiy1spd.png)
Resolve the parenthesis first,
![\begin{gathered} -10(c)-10(3)+4c\ge90 \\ -10c-30+4c\ge90 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a5vzpkl0rr8ye4us8v207j97vrl9k595db.png)
Adding the like terms,
![\begin{gathered} (-10+4)c-30\ge90 \\ -6c-30\ge90 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pi0e2at93zemyk4acwbpe3b3oey5l252u8.png)
Add 30 both sides,
![\begin{gathered} -6c-30+30\ge90+30 \\ -6c\ge120 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sjhn6wuwdhqbm4629ao8xyj0snd98uiz77.png)
Divide both sides by -6, note that the inequality gets reversed when multiplied or divided by a negative number,
![\begin{gathered} (-6c)/(-6)\leq(120)/(-6) \\ c\leq-20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w47q1ybedxr84tz4b16jw6wwwzgd0oz8g7.png)
Thus, the solution set for the given inequation is,
![c\in(-\infty,-20\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/tdxzfhskkh8a9qtkxfasgc3qkc64mgd4mz.png)