109k views
1 vote
Each of the following expressions has a single numerical value for all θ where the expression is defined. Determine the numerical value of each expression and make sure to enter a single number.√36⋅cos^2(θ)+36⋅sin^2(θ)=7/sec^2(θ)−tan^2(θ)=(cos^2(θ)+sin^2(θ))(sec^2(θ)−tan^2(θ))=sin(θ)/csc(θ)+cos(θ)/sec(θ)=

Each of the following expressions has a single numerical value for all θ where the-example-1
User Rizan Zaky
by
4.2k points

1 Answer

0 votes

Part a

Remember that


\sin ^2(\theta)+\cos ^2(\theta)=1

therefore


\begin{gathered} \sqrt[]{36\sin^2(\theta)+36\cos^2(\theta)} \\ \sqrt[]{36(\sin^2(\theta)+\cos^2(\theta))} \\ \sqrt[]{36} \\ 6 \end{gathered}

Part b

Remember that


\begin{gathered} \tan ^2(\theta)+1=\sec ^2(\theta) \\ \end{gathered}

substitute in the given expression


\begin{gathered} (7)/(\sec^2(\theta)-\tan^2(\rbrack\theta)) \\ \\ (7)/(\tan ^2(\theta)+1-\tan ^2(\theta)) \\ \\ (7)/(1)=7 \end{gathered}

Part c

Substitute the given identities in part a and part b

we have


(1)\cdot(1)=1

Part d

Remember that


\csc (\theta)=(1)/(\sin (\theta))
\sec (\theta)=(1)/(\cos (\theta))

substitute in the given expression


(\sin (\theta))/(((1)/(\sin (\theta))))+(\cos (\theta))/(((1)/(\cos (\theta))))
\sin ^2(\theta)+\cos ^2(\theta)=1

User Kolban
by
4.1k points