109k views
1 vote
Each of the following expressions has a single numerical value for all θ where the expression is defined. Determine the numerical value of each expression and make sure to enter a single number.√36⋅cos^2(θ)+36⋅sin^2(θ)=7/sec^2(θ)−tan^2(θ)=(cos^2(θ)+sin^2(θ))(sec^2(θ)−tan^2(θ))=sin(θ)/csc(θ)+cos(θ)/sec(θ)=

Each of the following expressions has a single numerical value for all θ where the-example-1
User Rizan Zaky
by
8.1k points

1 Answer

0 votes

Part a

Remember that


\sin ^2(\theta)+\cos ^2(\theta)=1

therefore


\begin{gathered} \sqrt[]{36\sin^2(\theta)+36\cos^2(\theta)} \\ \sqrt[]{36(\sin^2(\theta)+\cos^2(\theta))} \\ \sqrt[]{36} \\ 6 \end{gathered}

Part b

Remember that


\begin{gathered} \tan ^2(\theta)+1=\sec ^2(\theta) \\ \end{gathered}

substitute in the given expression


\begin{gathered} (7)/(\sec^2(\theta)-\tan^2(\rbrack\theta)) \\ \\ (7)/(\tan ^2(\theta)+1-\tan ^2(\theta)) \\ \\ (7)/(1)=7 \end{gathered}

Part c

Substitute the given identities in part a and part b

we have


(1)\cdot(1)=1

Part d

Remember that


\csc (\theta)=(1)/(\sin (\theta))
\sec (\theta)=(1)/(\cos (\theta))

substitute in the given expression


(\sin (\theta))/(((1)/(\sin (\theta))))+(\cos (\theta))/(((1)/(\cos (\theta))))
\sin ^2(\theta)+\cos ^2(\theta)=1

User Kolban
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories