Given,
The initial volume of the air, V₁=30 cm³=30×10⁻6 m³
The initial temperature of the air, T₁=29 °C=302.15 K
The final temperature of the air, T₂=4 °C=277.15 K
From Charles' law, we have,
![(V_1)/(T_1)=(V_2)/(T_2)](https://img.qammunity.org/2023/formulas/chemistry/college/5gmq3hqk5fy8rap0wm44np4h9tbaobke0o.png)
Where V₂ is the final volume of the air.
On substituting the known values,
![\begin{gathered} (30*10^(-6))/(302.15)=\frac{V_2_{}}{277.15} \\ \Rightarrow V_2=(30*10^(-6)*277.15)/(302.15) \\ =27.52*10^(-6)m^3 \\ =27.52cm^3 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/rihp969xm6r1659b2xogoqn5kcuw82knob.png)
Thus the volume of the ai after reducing the temperature is 27.52 cm³