If the base is a square, the length is equal the width (let's call it x).
If the height is 2 ft greater than the length and width, we have:
![h=x+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/a10zaka0bvts0nyriyw9wmk1kow6zg2s8r.png)
Also, if the surface area is 384 ft², we have:
![\begin{gathered} S=x^2+4\cdot xh \\ 384=x^2+4xh \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4hdxft9loniby4w8o6a400ltp53s01z1h7.png)
Using h = x + 2 in this equation, we have:
![\begin{gathered} 384=x^2+4x(x+2) \\ 384=x^2+4x^2+8x \\ 384=5x^2+8x \\ 5x^2+8x-384=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9yqi9a8yuyzxoep4o414s4e2lpp2hi3xc8.png)
Solving this equation using the quadratic formula, we have:
![\begin{gathered} x_1=\frac{-b+\sqrt[]{b^2-4ac}}{2a}=\frac{-8+\sqrt[]{64+7680}}{10}=(-8+88)/(10)=8 \\ x_2=(-8-88)/(10)=-9.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/uvnziqccsd2rx57jz1jr5r3zipoejgwc5v.png)
So if x = 8, the dimensions of the box are 8 ft of length, 8 ft of width and 10 ft of height.