We have
![y=-x^2-22x-112](https://img.qammunity.org/2023/formulas/mathematics/college/y5s1a5ybyws41gud39aey7a3dsmy1sccwn.png)
For the vertex we have the next formula
for the x-coordinate of the vertex
![x=(-b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/high-school/thp2xvy4ibcymljghqfdd580j7p1ckgbwu.png)
In our case
a=-1
b=-22
![x=(22)/(2(-1))=-11](https://img.qammunity.org/2023/formulas/mathematics/college/jsdsemmkejw5uo0wpyiymy624qtbqryfsy.png)
then we substitute this value in the function
![y=-(-11)^2-22(-11)-112=9](https://img.qammunity.org/2023/formulas/mathematics/college/7ztzvs4bi3640i1lvd7b8eg3ufyut9czzp.png)
The vertex is (-11,9)
For the roots we make y=0
![\begin{gathered} -x^2-22x-112=0 \\ x^2+22+112=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h5fkm3kun7fgu0r4920grc1ii8qbqqsnr6.png)
Then we factorize
![(x+14)(x+8)=0](https://img.qammunity.org/2023/formulas/mathematics/college/o9r6osqywmnnqujxhhkj3prccbua15875l.png)
The roots are
x=-14
x=-8
Then for other two points
x=-15
![-(-15)^2-22(-15)-112=-7](https://img.qammunity.org/2023/formulas/mathematics/college/9n9be1ducsj3yw79cel9wcvq53c4kcasth.png)
Point (-15,7)
x=-7
![-(-7)^2-22(-7)-112=-7](https://img.qammunity.org/2023/formulas/mathematics/college/h1df4tbvbrmunthezjrt6xenv9rttf30hk.png)
Point (-7,-7)
the x-sel1
the ysel : 2