12.3k views
0 votes
What is the solution of the equation? Radical functions. Thank you!

What is the solution of the equation? Radical functions. Thank you!-example-1

1 Answer

1 vote

Given


√(2x+13)-5=x

We can find the value of x below

Step-by-step explanation

Step 1: Solve for x


\begin{gathered} √(2x+13)-5=x \\ Add\text{ 5 to both sides} \\ √(2x+13)-5+5=x+5 \\ √(2x+13)=x+5 \\ Take\text{ the square of both sides} \\ (√(2x+13))^2=(x+5)^2 \\ 2x+13=x^2+10x+25 \\ Move\text{ terms to one side} \\ x^2+10x+25-2x-13=0 \\ x^2+8x+12=0 \\ We\text{ will solve the above using quadratic formula} \\ \mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:} \\ x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a) \\ \mathrm{For\:}\quad a=1,\:b=8,\:c=12 \\ x_(1,\:2)=(-8\pm √(8^2-4\cdot \:1\cdot \:12))/(2\cdot \:1) \\ x_(1,\:2)=(-8\pm \:4)/(2\cdot \:1) \\ \mathrm{Separate\:the\:solutions} \\ x_1=(-8+4)/(2\cdot \:1),\:x_2=(-8-4)/(2\cdot \:1) \\ \mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:} \\ x=-2,\:x=-6 \\ \end{gathered}

Step 2: Verify solutions


\begin{gathered} For\text{ x=-2} \\ √(2\left(-2\right)+13)-5=-2 \\ √(9)-5=-2 \\ 3-5=-2 \\ -2=-2;True \\ For\text{ x=-6} \\ √(2\left(-6\right)+13)-5=-6 \\ √(-12+13)-5=-6 \\ √(1)-5=-6 \\ -4\\e-6;False \end{gathered}

Answer: x = -2

User Viraj Dhamal
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories