In the given figure we can determine the coordinate of point M from the graph, we get:
![M=((d)/(2),(c)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/zshw19trkrj0sqva8rww7mva356fjr9es6.png)
We can also determine the coordinates of point N as:
![N=((a+b)/(2),(c)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/un6ru9o69ampv5qzgf5vzurvjqyzezncpr.png)
Now, to determine the length of segment MN, we need to subtract the x-coordinate of M from the coordinates of N, we get:
![MN=(a+b)/(2)-(d)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/yp7anpfl7canouxsa7a1r20shma4gj4a56.png)
Subtracting the fractions we get:
![MN=(a+b-d)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/rteyujmbsrygh273v4rwxlugcqjfxsilay.png)
Now, to obtain the length of AB we need to subtract the x-coordinate of A from the x-coordinate of B.
The coordinates of A are determined from the graph:
![A=(0,0)](https://img.qammunity.org/2023/formulas/mathematics/college/uekdv441wlbmmfgigql8o56mua16bt21zn.png)
The coordinates of B are:
![B=(a,0)](https://img.qammunity.org/2023/formulas/mathematics/college/2flx3reldjogeyi1on94c5p23uzxyhpg8w.png)
Therefore, the length of segment AB is:
![AB=a](https://img.qammunity.org/2023/formulas/mathematics/college/a1rzwcl5onoap7yumoue33pp9ck42j9x5a.png)
Now we do the same procedure to determine the segment of CD. The coordinates of C are:
![C=(b,c)](https://img.qammunity.org/2023/formulas/mathematics/college/ceabs08wylqspnozm8dfe32v4szruo4j5e.png)
The coordinates of D are:
![D=(d,c)](https://img.qammunity.org/2023/formulas/mathematics/college/zml85ch5djgz2ys4jpipnkeoj427zci61u.png)
Therefore, CD is:
![CD=b-d](https://img.qammunity.org/2023/formulas/mathematics/college/mqkj9dd48l3ela24cukuz4qi9h985es9c3.png)
Now, we determine MN as half the sum of the bases. The bases are AB and CD, therefore:
![MN=(1)/(2)(a+b-d)](https://img.qammunity.org/2023/formulas/mathematics/college/xap1jad9xwhouc26liyll5ak8cpqak3tvr.png)
Therefore, we have proven that the median of a trapezoid equals half the sum of its bases.